) egghead.io

Redux Cheat Sheet 23

React 'react’
ReactDOM 'react-dom'
createStore, combineReducers

applyMiddleware, bindActionCreators 'redux'

greetingReducer state action
action.type
'SAY_HELLO' 'Hello '
'SAY_GOODBYE" 'Goodbye '

state

nameReducer state 'John', action
action.type
' CHANGE_NAME* 'Joel"

state

actionLogger {dispatch, getState}
next action
console.log action next action
reducers combineReducers ({
greeting: greetingReducer,
name: nameReducer

middleware applyMiddleware(actionLogger
store = createStore

reducers

{ greeting: '(Roll over me) '}

middleware
changeName { type: 'CHANGE_NAME'
hello { type: 'SAY_HELLO' }
goodbye { type: 'SAY_GOODBYE' }

Hello props

props.hello
props.goodbye
props.changeName
props.greeting}{props.name

render
ReactDOM. render

store.getState().greeting
store.getState name

bindActionCreators({changeName, hello, goodbye},

store.dispatch)

document.getElementById('root'

render
store.subscribe(render

Welcome to the egghead.io Redux cheat sheat! On your left you
will find a full-fledged Redux application with a React.js front-end
(React is not required).

function (€D, &™) -

Takes the previous state and an action, and returns the next state.

Splitting your app into multiple reducers (s) allows
for a clean separation of concerns when modifying your application's state.

function [({D1spatcn, cETSTATE} JJN =

Receives Store’s and functions as named arguments, and
returns a function. That function will be given the next middleware’s dispatch method,
and is expected to return a function of action calling with a potentially
different argument, or at a different time, or maybe not calling it at all. The last
middleware in the chain will receive the real store’s method as the next
parameter, thus ending the chain.

(CEDY) -

Combines multiple reducers into a single reducing function with each reducer as a
key/value pair. Can then be passed to

(D) -

Extends Redux with custom functionality by wrapping the store’s dispatch method.

[Reocer B ’) =

Creates a Redux store that holds the complete state tree of your app.
There should only be a single store in your app.

T coo &
Brings together your application's state and has the following responsibilities:

Allows access to state via

Allows state to be updated via H
Registers listeners via N

Handles unregistering of listeners via the function returned by

{ type: , ...payload: b

Holds action payloads in plain javascript objects. Must have a type property that
indicates the performed action, typically be defined as string constants. All other
properties are the action's payload.

function (@) -

Creates an action with optional payload and bound dispatch.

(CRIEED, G223, -

Turns an object whose values are action creators, into an object with the same keys,
but with every action creator wrapped into a dispatch call so they may be invoked
directly.

Redux's Three Principles

Single source of truth
State is read-only
Changes are made with pure functions

Glossary

State

State = any

Action

Action TYPE: STRING PAYLOAD: ANY

Reducer

Reducer<State, Action> STATE Actzon State

Dispatching Functions
BaseDispatch AcTION Action

Dispatch Action | AsyncAcTIon any

Action Creator

ActionCreator ANY Action | AsyncAction

Async Action

AsyncAction = any

Middleware
MiddlewareAPI DISPATCH: DISPATCH GETSTATE: () => SrtATE
Middleware MzopLewaREAPT DISPATCH Dispatch
Store
Store
Action | AsyncAcTIon any
State
() => VoID void
REebuCER void
Store Creator
StoreCreator Rebucer 2INITIALSTATE 7ENHANCER Store
Store Enhancer
StoreEnhancer STORECREATOR StoreCreator

